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Abstract

A model for analysing the phase sensitivity of the
re¯ection coef®cients of a diffracted wave in the case of
three-wave X-ray diffraction is proposed. This model
considers three-wave diffraction as the interference of
the directly excited and the Umweg-excited diffracted
waves and seems to account properly for the phase
sensitivity as well as the behaviour of an involved
diffracted wave as a function of the triplet phase
invariant, the polarization state of the incident wave
and the diffraction geometry. The practical issues for
phase determination are also considered.

1. Introduction

X-ray crystal structure analysis is usually based on the
data obtained from two-wave diffraction. In this case,
the intensity of the diffracted wave is determined solely
by the absolute magnitude of the structure factor, which
is independent of its phase. Thus, the phase cannot be
determined from a single two-wave experiment. This
phase problem does not, however, arise for multiple-
wave diffraction since the intensity of the diffracted
wave depends on both the absolute magnitude and the
phases of the structure factors involved. This observa-
tion was ®rst reported in the literature by Lipscomb
(1949). Since then the problem of obtaining the phase
information has been tackled by several investigators
(Miyake & Kambe, 1954; Kambe, 1957; Kambe &
Miyake, 1954; Hart & Lang, 1961). But no marked
progress in the development of a useful method for
X-ray diffraction analysis had been achieved. During the
past two decades, a number of studies (Collella, 1974;
Post, 1977; Chapman et al., 1981; Hoier & Aanestad,
1981; Chang, 1982, 1984, 1998; HuÈ mmer & Billy, 1982,
1986; Juretschke, 1982a,b; Chang & Valladares, 1985;
Juretschke, 1986; Kshevetskiy et al., 1987; Sheludko,
1987; Shen & Colella, 1988; Mo et al., 1988; Chang &
Tang, 1988; HuÈ mmer et al., 1989; Stetsko, 1990; Tseng &
Chang, 1990; Weckert & HuÈ mmer, 1997; Chang et al.,
1998; Shen, 1998; Stetsko & Chang, 1999) have been
devoted to the investigation of the effect of X-ray

re¯ection phases on the behaviour of multiple-wave
diffraction, and methods for directly measuring the
magnitude of the triplet phase invariant have been
developed.

HuÈ mmer & Billy (1986) have made possible the
physical interpretation of the phase sensitivity of
multiple-wave diffraction in terms of the interference of
electromagnetic waves inside a crystal using the one-
coordinate angular (the azimuthal angle of a given
primary re¯ection) distributions of waves. A more
preferable interpretation of phase sensitivity seems to
be the approach given by Sheludko (1987), where the
two-coordinate (the azimuthal and Bragg angles of a
given primary re¯ection) angular distributions of phases
of all the waves excited in the multiple-wave diffraction
are considered. Very recently, Weckert & HuÈ mmer
(1997) and Chang (1998) have reviewed the current
status of the problem under consideration. The purpose
of the present contribution is to discuss some general
features of phase sensitivity of three-wave diffraction
and, of equal importance, to derive the diffraction
conditions under which high phase sensitivity, for the
accurate determination of the values of triplet phase
invariants, can be achieved.

2. The triplet phase invariant

The problem of ®nding the amplitudes of diffracted
waves is known to have no analytical solution for a
general case of three-wave dynamic X-ray diffraction.
Therefore, to illustrate the proposed technique for
analysing the phase sensitivity of the three-wave
diffraction, numerical calculations need to be employed
(see, for example, Kohn, 1979; Stetsko & Chang, 1997).
In fact, when considering the phase sensitivity, the
proper presentation of a triplet phase invariant value in
the numerical calculations is nontrivial. In the following,
we discuss this in some detail.

The structure factor of a re¯ection H with the
diffraction vector H is

FH �
P

j

fj exp�2�iH � rj� � jFHj exp�i�H�; �1�

683

# 1999 International Union of Crystallography Acta Crystallographica Section A
Printed in Great Britain ± all rights reserved ISSN 0108-7673 # 1999



684 THREE-WAVE X-RAY DIFFRACTION

where fj is the atomic scattering factor for the jth atom of
the unit cell, rj is the position vector of this atom with
respect to an arbitrary origin, and �H is the phase of the
structure factor. In real space, the loci of equal phase �H

are the phase planes normal to the diffraction vector
H. These planes for �H � 0 are designated as PH; see
Fig. 1. They make up a set of equiphase planes, which
are known to be ®xed with respect to the structure.
The corresponding interplane spacing is given by
dH � jHjÿ1. It follows from (1) that

�H � 2��H=dH; �2�
where �H is the distance from the origin to the PH plane.
Similarly, the phase planes for �ÿH of the structure
factor FÿH � 0 are designated as PÿH.

Consider three-wave (0, H, K) diffraction where H is
the primary re¯ection, K is the secondary re¯ection and
L is the coupling re¯ection, with diffraction vectors H, K
and L � Hÿ K, respectively. It is known that the
product of the structure factors,

Q
m FHm

, is independent
of the choice of the origin if

P
m Hm � 0. This is indeed

true for the three-wave case. For the crystallographic
planes in question, the value of the phase sum

�3 � �ÿH ��K ��L �3�
is also independent of the coordinate system, i.e. �3 is
the triplet phase invariant. In numerical terms, the
triplet phase invariant is given by

�3 � 2��ÿ�ÿH=dH � �K=dK � �L=dL�; �4�
where �ÿH is the distance from the origin to the PÿH

plane. The values associated with the re¯ections K and L
are determined in a similar way. Similarly,

��3 � �H ��ÿK ��ÿL �5�
is also a triplet phase invariant. For a nonabsorbing
crystal, ��3 � ÿ�3, whereas for an absorbing crystal in
the case of diffraction rather far from the absorption
edges, this equality is accurate to within several degrees
of arc. In this paper, we deal only with this conventional
multiple-wave X-ray diffraction situation when the
anomalous-scattering effects are negligibly small.

For numerical studies of multiple-wave diffraction in
an absorbing crystal, it is convenient to take advantage
of the modi®ed-phase concept proposed earlier by the
present authors (see Stetsko & Chang, 1999). When the
anomalous-scattering effects are negligibly small, there
exists a coordinate system in which FH ' FÿH � �FH .
The structure factor in an arbitrary coordinate system
can be represented as FH � �FH exp�i ��H�, where ��H is
the modi®ed phase. In Fig. 1, the planes for which
��H � 0 are designated as �PH. In terms of (2), ��H is

proportional to the distance from the origin to the �PH

plane. For a non-absorbing crystal, ��H � �H , �FH is a
real value and the phase planes PH, PÿH and �PH coincide
with one another, while, for an absorbing crystal, ��H

differs from �H by several degrees of arc. �FH is a
complex quantity, the imaginary part of which is
responsible for X-ray absorption, and the planes PH and
PÿH are at equal distances from the plane �PH. This
situation is shown in Fig. 1. Under such a de®nition
of a phase, ��ÿH � ÿ ��H , and, for modi®ed triplet
phase invariants ��3 � ��ÿH � ��K � ��L and
���3 � ��H � ��ÿK � ��ÿL, the condition ���3 � ÿ ��3 is

ful®lled regardless of the absorption. For consistency, in
what follows we shall use the triplet phase invariant ��3.

In the present paper, the numerical study of the phase
sensitivity of three-wave diffraction was carried out by
varying the value of ��3 for a crystal of known structure,
while leaving the values of �FH, �FK and �FL unchanged.
Such a variation of ��3 results in a change in the relative
position of one of the sets of equiphase planes (for
example, �PH) with respect to the other two sets ( �PK and
�PL). This, in turn, results in a hypothetical modi®cation
in the crystal structure.

The magnitude and the imaginary part of the modi®ed
structure factor �FH can, in principle, be determined from
the intensity of two-wave X-ray re¯ection by using the
width and the asymmetry of the re¯ection curve.
Certainly, these values can be determined with high
accuracy for `rather perfect' crystals (for real crystals,
the determination of the real and the imaginary parts of
�FH from the intensity of two-wave X-ray re¯ection is
dif®cult). Thus, the respective positions of phase planes
PH, PÿH and �PH for nearly perfect crystals can be
determined. By the same token, the value of the triplet
phase invariant ��3, and thus the respective positions of
phase planes �PH, �PK and �PL, can be determined from
the intensity of a three-wave X-ray re¯ection. Note that
no structure-factor modulus is assumed to be equal or
close enough to zero; otherwise, the value of the triplet
phase invariant is indeterminate.

3. The analysis scheme of the phase sensitivity

The phase sensitivity of using three-wave diffraction
for determining the triplet phase invariant
is analysed for the three-wave con®guration
Ge[0(000), H(111), K(220)] and linearly �-polarized CuFig. 1. Representation of the phase planes in the straight space.
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K�1 radiation. The polarization vectors for the primary
re¯ection H(111) are introduced as a convention:
r � r0 � rH � �s0 � sH �=j�s0 � sH �j, p0 � �r � s0�,
pH � �r � sH �, where s0 and sH are the unit vectors of
the incident and the diffracted waves, respectively. In the
present case, H(111) is a symmetrical Bragg primary
re¯ection and K(220) is a Bragg-type secondary re¯ec-
tion. When considering the distribution of re¯ection
coef®cients of the diffracted waves, the incident wave is
assumed to deviate from the exact three-wave diffrac-
tion position in the Bragg and azimuthal directions by
angles ��H and �'H, respectively. The directions of the
O��H

and O�'H
axes are chosen so that the positive

deviations correspond to a situation where the primary
H and the secondary K reciprocal-lattice points move
towards the Ewald sphere.

The aforementioned outline of the analysis of phase
sensitivity for conventional three-wave diffraction is in
many respects similar to that proposed by the present
authors (Stetsko & Chang, 1999) for grazing-beam
diffraction. However, in view of some speci®c features,
the three-wave diffraction process needs to be discussed
in detail. The essence of the proposed three-wave
re¯ection model is that the intensity of a diffracted wave
is represented as a result of the interference of the
waves, of which one is due to the direct two-wave
re¯ection, while the other is due to an Umweganregung
of the same primary re¯ection. These two waves can be
considered separately by assuming either that both the
secondary re¯ection K and the coupling re¯ection L are
forbidden re¯ections or that the primary re¯ection H is
a forbidden re¯ection. As a ®rst approximation, the
amplitude Es

H of a diffracted wave H can be treated as
the addition of the amplitudes Es

dir and Es
um of a directly

excited and an Umweg-excited wave:

Es
H � Es

dir � Es
um; �6�

where the superscripts s � �, � refer to the two
components of polarization with respect to the H
re¯ection.

For a common case of three-wave diffraction, it is
impossible to separate the orthogonally polarized
components involved in the interference. However,
when considering the interference of the directly excited
and the Umweg-excited waves, only the same polarized
components have to be taken into account. For �
polarization, the re¯ection coef®cient can be repre-
sented as

R�
H � jE�

dir� � E�
um� � E�

um�Hj2=jE�j2
� �jE�

dir � E�
umj2 � jE�

umj2�=jE�j2; �7�

where E� is the amplitude of the incident wave. It can be
seen that the � component of the Umweg-excited wave
does not participate in the interference, giving only an
additive contribution to the re¯ection coef®cient.

3.1. Two-wave diffraction

Consider a case where the secondary and the coupling
re¯ections are forbidden, i.e. only a two-wave diffraction
(0, H) takes place. The amplitude of a diffracted wave in
the two-wave case is known to be proportional to the
structure factor FH and the polarization factor Ps

H

�P�H � 1 and P�H � cos 2�H , where �H is the diffraction
angle). Moreover, the amplitude is appreciably depen-
dent on the angle ��H and independent of or weakly
dependent on the azimuthal angle �'H. The strong
dependence of the amplitude on the azimuthal angle
only happens for grazing-beam diffraction geometry.
The amplitude of a diffracted wave for the present case
can be represented as

Es
dir��'H;��H� � EsPs

HAs
H���H�FH; �8a�

where Es is the amplitude of the incident wave in
vacuum and As

H���H� is the fraction of the amplitude of
the diffracted wave, depending on the Bragg angle �H,
the structure-factor product FHFÿH, the square of the
polarization factor and the deviated angle ��H. In
particular, the amplitude of a diffracted wave for the
symmetrical Bragg case for a semi-in®nite crystal is
represented as

Es
dir��'H;��H�
� ÿEsPs

H�H=���H sin�2�H� � Im��0� � g�; �8b�
where

g � �f���H sin�2�H� � Im��0��2 ÿ �Ps
H�2�H�ÿHg1=2

with Im�g�< 0. The quantities �i � ÿre�
2Fi=��V� are

the Fourier components of the crystal polarizability, re is
the classical radius of the electron, � is the incident
X-ray wavelength and V is the unit-cell volume. The
phase of this wave is given by

	s
dir � 	s

0 ��s
dir ��H; �9�

where 	s
0 is the phase of the incident wave and �s

dir is
the phase of the diffracted wave, depending on the
incident angle and the polarization. The term �s

dir stands
for the `diffraction' phase shift and �H for the `struc-
tural' phase shift. The �s

dir value can be represented as

�s
dir��'H;��H� � Ys���H� ��s

H; �10�
where

�s
H � 0 if Ps

H > 0

ÿ� if Ps
H < 0

�
�11�

and Ys���H� describes the phase shift of the diffracted
wave when the reciprocal-lattice point H moves across
the surface of the Ewald sphere. Such a motion, or a
transition from a positive to a negative ��H angle, is
accompanied by an increase of � in the phase of the
diffracted wave. It is known that, for a nonabsorbing
crystal, the angle width �s�H of the total re¯ection region
is
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�s�H � 2j�HPs
Hj= sin�2�H�: �12�

Changing the incident angle by crossing this re¯ection
region causes a phase increase of � of the diffracted
wave. As can be seen from (11), ��

H is always zero for �
polarization because P�H is always positive.

Fig. 2 shows the angular distributions of the re¯ection
coef®cient and the phase ��

dir of the diffracted wave.
They are given here solely to preserve the completeness
of exposition of the phase sensitivity mechanism for
later comparison. The line TH in Fig. 2 corresponds to
the case when the lattice point H is on the surface of the
Ewald sphere, the area designated as INH corresponds
to the case when H is inside the Ewald sphere, and
OUTH is for the H lattice point outside the Ewald
sphere. For convenience, the Ewald sphere for waves
propagating inside a crystal is considered, i.e. the sphere
with radius equal to �j1� �0j�1=2=�. The line TH is then
the loci of the Lorentz points for the H re¯ection. It is
worth noting that, along the TH ���H � 0� line,
��

dir � Y����H� � Y����H� � �=2.

3.2. Umweganregung three-wave diffraction

We now assume that the primary re¯ection H is
forbidden and the secondary re¯ection K and the
coupling re¯ection L are allowed. The approximation
that the Umweg-excited wave is considered as resulting
from the sequential two-wave re¯ections of the incident
wave from two crystallographic planes K and L (see

also, for example, Post, 1977; Weckert & HuÈ mmer, 1997;
Chang, 1998) is adopted. That is, the K diffracted wave is
then considered as the incident wave for the L plane
that is scattered back to the H direction. In this case, the
amplitude of the Umweg-excited wave can be repre-
sented as

Es
um��'H;��H� � Esps

umAs
K���K�FKAs

L���L�FL; �13�
where ps

um is the polarization factor of the Umweg-
excited wave, and As

K���K� and As
L���L� are the

amplitude components dependent on the Bragg angles
�K and �L, the structure-factor products FKFÿK and
FLFÿL, the squares of the polarization factors and the
angles ��K and ��L deviated from the Bragg angles of
the re¯ections K and L, respectively. The details of the
angular distribution of Es

um (more exactly, the re¯ection
coef®cient jEs

umj2) and the comparison with that calcu-
lated within the framework of the dynamical theory will
be discussed later.

Since the resultant polarization factor of the Umweg-
excited wave exhibits rather complex dependence on the
polarization factors of the individual re¯ections
involved, it has been included in (13) as a whole. The
magnitude of the polarization factor and its sign (the
latter being even more important) are the determining
factors in the analysis of phase sensitivity of three-wave
diffraction. Without trying to derive the exact expres-
sion for the polarization factor, which is complicated to
obtain within the framework of the dynamical theory, we
estimate it using the kinematical approximation, i.e. in
geometrical terms. Suppose that the polarization vector
p0 of the incident wave is arbitrary, such that the electric
wave®eld E of the incident wave equals Ep0;
p0 � �r � �p0, where � and � (�2 � �2 � 1) are the
polarization components in the coordinate system
�r; p0�. For the � and � components of the amplitude for
the kinematical re¯ection H, the connection
E�

H � E�
H cos 2�H can be used when E� � E� � E (see,

for example, Zachariasen, 1965; Caticha-Ellis, 1969;
Unangst & Melle, 1975). For the electric wave®eld EH of
the diffracted wave,

EH � �E�
Hr � �E�

HpH

� E�
H ��r � � cos�2�H�pH �

� E�
HpH; �14�

which implies that the polarization vector pH of the
diffracted wave is a transverse component of the vector
p0 with respect to the diffracted wave vector sH:

pH � p0 ÿ �p0 � sH�sH : �15�
In the general two-wave case, i.e. when the vector p0 is
arbitrary, it is necessary to consider two polarization
factors that are the projections of the vector pH on the
unit polarization vectors r and pH of the diffracted
wave:

Fig. 2. Two-wave diffraction: (a) re¯ection coef®cient RH��'H;��H�
and (b) the phase ��

dir. Contour levels in (a) are from 0.1 to 0.9 with
the step 0.1.
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p�H � �pH � r� � �p0 � r� � �P�H; �16a�
p�H � �pH � pH� � �p0 � pH� � �P�H : �16b�

These general expressions of the polarization factors are
in good agreement with those for the conventional cases:
for the �-polarized incident wave (p0 = r, � = 1; � = 0),
p�H��� � P�H � 1 and p�H��� � 0; for the �-polarized
incident wave (p0 = p0, � = 0; � = 1), p�H��� � 0 and
p�H��� � P�H � cos 2�H .

For the case involving a forbidden primary re¯ection,
the Umweg-excited wave is considered, as before, as
resulting from the sequential re¯ections K and L.
Applying expression (15) ®rst to the re¯ection K and
then to the re¯ection L, we obtain

pK � p0 ÿ �p0 � sK�sK

pum � pK ÿ �pK � sH�sH

� p0 ÿ �p0 � sK�sK ÿ �p0 � sH�sH

� �p0 � sK��sH � sK�sH;

�17�

where sK is the unit vector of the diffracted wave K. By
analogy with the two-wave case, the polarization factors
of the Umweg-excited wave are

p�um � �pum � r� � �p0 � r� ÿ �p0 � sK��sK � r�;
�18a�

p�um � �pum � pH� � �p0 � pH� ÿ �p0 � sK��sK � pH�:
�18b�

In particular, these polarization factors are

p�um��� � 1ÿ �r � sK�2; �19a�
p�um��� � ÿ �r � sK��pH � sK�; �19b�

for a �-polarized incident wave when p0 = r, and

p�um��� � ÿ �r � sK��p0 � sK�; �19c�
p�um��� � �p0 � pH� ÿ �p0 � sK��pH � sK�; �19d�

for a �-polarized incident wave when p0 � p0. The
analysis of the expressions (19a)±(19d) will be given
later. For the case in question, p�um��� � 0:83,
p�um��� � ÿ0:08, p�um��� � ÿ0:24 and p�um��� � 0:78.

For obtaining (19a)±(19d), we adopted the expression
of the polarization factor from the kinematical theory,
which actually differs from that of the dynamical theory.
However, this kinematical approach gives us the
approximately correct expressions for polarization
factors of the Umweg-excited wave. Moreover, as will be
seen latter, these expressions can be effectively used for
qualitative analysis of the phase sensitivity of three-
wave diffraction.

In considering the interference of the directly excited
and the Umweg-excited waves, only the waves of the
same polarization must be taken into account. There-
fore, we consider the phase only for the � component of

the Umweg-excited wave coincident with that of the
incident wave. The phase takes the form

	ss
um � 	s

0 ��ss
um ��K ��L; �20�

where �ss
um depends only on the incident wavelength and

the angles of incidence. Similar to (10), �ss
um is given as

�ss
um��'H;��H� � Ys���K� � Ys���L� ��ss

um; �21�
where

�ss
um � 0 if ps

um�s�> 0

ÿ� if ps
um�s�< 0

�
�22�

and Ys���K� and Ys���L�, as will be evident from the
following discussion, describe the phase shifts of the
diffracted wave when the reciprocal-lattice points move
across the surface of the Ewald sphere. It can be seen
from (19a) and (22) that ���

um is always zero for �
polarization.

As we have already mentioned, an analytical
expression for the amplitude of the diffracted wave is
dif®cult to obtain for a three-wave case. Alternatively, a
numerical analysis of the angular distributions of the
re¯ection coef®cient and the phase of the Umweg-
excited wave may carried out. Fig. 3 shows the angular
distributions of the re¯ection coef®cient and the phase
���

um of the � component of the Umweg-excited wave.
The value of p�um��� is much greater than that of p�um���
for the case in question. Therefore, the main contribu-
tion to the re¯ection coef®cient of the Umweg-excited

Fig. 3. Three-wave Umweganregung diffraction: (a) the re¯ection
coef®cient RH��'H;��H� and (b) the phase ���

um. Contour levels
are from 0.05 to 0.55 with step 0, 1 in (a) and from �=6 to 2� with
step �=6 in (b).
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wave is given by the � component. The re¯ection region
exhibits three intersecting bands extended along the
lines TH and TK, which is typical for Umweganregung.
For the secondary Bragg re¯ection K, the line TK in Fig.
3 corresponds to the situation in which the lattice point
K is on the surface of the Ewald sphere. The area
designated by INK corresponds to the case when K is
inside the Ewald sphere, and OUTK is for the K lattice
point outside the Ewald sphere. The line TK is the loci of
the Lorentz points for the Bragg re¯ection K. The
intersection of lines TH and TK is the three-wave
Lorentz point. A characteristic feature of the `diffrac-
tion' component ���

um of the phase is that crossing the
lines TH or TK results in a phase change of �, i.e. the lines
of equal values of the functions Ys���K� and Ys���L�
from (21) are oriented in the (�'H, ��H) plane along
one of the lines TK and TH. Such features are charac-
teristic for Umweg-excited waves. This is explained as
follows.

The electric wave®elds, E, inside the crystal in the
three-wave case are known to satisfy the set of equations
(see, for example, Chang, 1984):

2"0E0 � �0E0 � �ÿHEH � �ÿKEK;

2"HEH � �HE0 � �0EH � �LEK;

2"KEK � �KE0 � �ÿLEH � �0EK;

�23�

where " � �K2
j ÿ k2�=k2 � j � 0; H; K�, k is the magni-

tude of the incident wave vector in vacuum and Kj are
the magnitudes of the diffracted waves in the crystal.
Here, the unknown quantities are the "j and the vectors
Ej. In the vicinity of the Lorentz point, "j values are of
the order of �i �i � 0;�H;�K;�L�. To analyse the
angular distributions of the re¯ection coef®cient and
the phase of the Umweg-excited wave, the two-wave
approximation for three-wave diffraction (see, for
example, Chang, 1984) is employed. Consider a situa-
tion where Bragg's condition is almost satis®ed for the
H re¯ection, but not for the K re¯ection; that is, in the
(�'H, ��H) plane, the situation (i.e. the tie point) is
close to the TH line and far from the TK line. In this case,
"K is much greater than "0 and "H in absolute values. The
wave®elds E0 and EH can be approximated using the
two-wave approach. By substituting the wave®eld EK of
the third equation of (23) into the ®rst two equations, we
obtain

2"0E0 � �0E0 � ��ÿL�ÿK=2"K�EH;

2"HEH � ��L�K=2"K�E0 � �0EH :
�24�

Here, the following assumptions have been made:

2"K ÿ �0 � 2"K

and

�0 � �K�ÿK=2"K � �0 � �L�ÿL=2"K � �0:

It was also assumed that �H � �ÿH � 0 for the
forbidden primary re¯ection case considered in this
section. Equation (24) is similar to that for the two-wave
case, the difference being that it involves �L�K=2"K and
�ÿL�ÿK=2"K instead of �H and �ÿH. Therefore, the
solutions of (24) exhibit also the characteristics of two-
wave diffraction, i.e., for a ®xed "K value, the maximum
of the re¯ection coef®cient is observed along the line
TH, and the crossing of this line results in a phase change
of �. Besides, the re¯ection coef®cient decreases as we
move away from the TK line because of the increase of
j"Kj. On the other hand, "K has opposite signs on either
side of the TK line. "K < 0 when the lattice point K is
inside the Ewald sphere and "K > 0 when it is outside the
Ewald sphere. According to (24), this means that
crossing the TK line also results in a phase change of �.
Thus, for the Umweg-excited wave, the motion of the
lattice points H and K leaving the Ewald sphere causes a
phase change of �.

We have so far considered the Bragg±Bragg case
where a primary re¯ection H and a secondary re¯ection
are of a Bragg type. For a Bragg±Laue case with a
Bragg-type primary re¯ection and a Laue-type (trans-
mission) secondary re¯ection, it has been shown (Chang,
1978, 1984; Pinsker, 1977) that according to the
reciprocity theorem (Born & Wolf, 1970) the corre-
sponding Bragg±Bragg and Bragg±Laue cases [for
example, the 0(000), H(111), K(220) case and the
0(000), H(111), K(�1�11) case, respectively] should have
the same re¯ection coef®cient of the primary re¯ection
H. Moreover, the direction of the secondary re¯ection in
the Bragg±Bragg case coincides with the direction of the
coupling re¯ection of the Bragg±Laue case. In the
present calculation, the same results are also
obtained. Namely, the calculated results of Fig. 3 are
repeatedly obtained for the Bragg±Laue case
0(000), H(111), K(�1�11), except that the TK line of the
Bragg±Bragg case is now the TL line of the Bragg±Laue
case, and the TL line now corresponds to the locus of the
point K crossing the surface of the Ewald sphere centred
at the point H.

In accordance with the above arguments, (21) can be
rewritten as

�ss
um��'H;��H� � Ys���K� � �Ys���H� ��ss

um; �25�
where Ys���K� and �Ys���H� describe the increase of
the phase of � when the lattice points K and H move
outside the Ewald sphere. The function �Ys���H� is not
identical to Ys���H�, because the expression of the
angular width ��s�H of the total re¯ection region derived
from (24),

��s�H � j�L�K Ps
Hj= sin�2�H�j"Kj; �26�

is not the same as (12). As the situation (i.e. the tie
point) moves from the three-wave Lorentz point along
the TH line, ��s�H ! 0 because of the increase of j"Kj.
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However, �Ys���H�, as before, approaches �=2 along the
TH line.

3.3. Interference of waves

The interference of waves relies on the difference in
the phase of the waves involved. In view of (9) and (20),
the difference in phases between an Umweg-excited and
a directly excited wave is given as

	s �	ss
um ÿ	s

dir

��ss
um ÿ�s

dir ��K ��L ÿ�H

��ss
um ÿ�s

dir � ��3: �27�
The last equality holds exactly for nonabsorbing crystals.
�ss

um ÿ�ss
dir represents a `diffraction' phase difference

and ��3 a `structural' phase difference between an
Umweg-excited and a directly excited wave. The differ-
ence in the phase is therefore directly related to the
triplet phase invariant.

The `diffraction' phase difference, according to (10)
and (25), is given as

�s ��ss
um ÿ�s

dir

�Ys���K� � �Ys���H� ÿ Ys���H� ��s
3; �28�

where

�s
3 � �ss

um ÿ�s
H : �29�

As follows from (11), (19a) and (22), for � polarization,
�s

3 � 0. The behaviour of �s is qualitatively rather well
described by the expression

�s � �ss
um ÿ�s

dir � Ys���K� ��s
3 �30�

in the vicinity of the TH line as well as far from it because
�Ys���H� � Ys���H�. Fig. 4 gives the angular distribu-
tions of ��, which are in good agreement with this
statement.

The �� distribution thus obtained, in principle, gives a
qualitative account of the phase dependence of the
distribution of the re¯ection coef®cients of the
diffracted wave. This can be proved by analysing the
interference of the directly excited and the Umweg-

excited waves, taking into account the �� distribution
and the magnitude of the triplet phase invariant.

We now compare the qualitative results with those
obtained from the calculations for the re¯ection coef®-
cients RH��'H;��H� and the semi-integral curves
RH��'H� �

R
RH��'H;��H� d��H of a diffracted

wave with the triplet phase invariant values
��3 � ÿ�=2; 0;�=2;� (Figs. 5 and 6). In Fig. 6, the semi-

Fig. 4. Angular distributions of ��. Contour levels are from ÿ�=6 to
7�=6 with step �=6.

Fig. 5. Three-wave diffraction. Re¯ection coef®cient RH��'H;��H�
for ��3 � ÿ�=2; 0;�=2;�. Contour levels are from 0.1 to 0.9 with
step 0.1.
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integral curves are normalized to the two-wave value of
the corresponding re¯ection.

For the phase invariant ��3 � 0, the interference-
induced ampli®cation and attenuation of waves occurs
on the opposite sides [INK and OUTK in Fig. 3(a)] of the
TK line in the vicinity of the TH line. The ampli®cation
and attenuation is observed as the intensity variation of
the directly excited wave, since this intensity is higher
than that of an Umweg-excited wave (see Figs. 2a and
3a). For �'H < 0, according to (27) and (30), the phase
difference 	� of the waves is close to � and the
attenuation in intensity occurs [see Fig. 5(b) and curve 2
of Fig. 6]. For �'H > 0, 	� is close to zero and the
ampli®cation in intensity takes place. A change of � in
the value of the triplet phase invariant reverses the
order of appearance of the regions of ampli®cation and
attenuation [see Fig. 5(d) and curve 4 of Fig. 6].

Since, for the phase invariant equal to ÿ�=2, 	� is
close to zero in the vicinity of the line TK, the ampli®-
cation in intensity occurs [see Fig. 5(a) and curve 1 of
Fig. 6]. For a triplet phase invariant �=2, the situation is
reversed, i.e. 	� is close to � and the attenuation in
intensity takes place [see Fig. 5(c) and curve 3 of Fig. 6].
The distributions of the re¯ection coef®cients of a

diffracted wave for intermediate values of the triplet
phase invariant can be interpreted in a similar way.

Fig. 7 shows the semi-integrated re¯ection coef®cient
RH��'H; ��3� �

R
RH��'H; ��3;��H� d��H obtained

with a continuously varying triplet phase invariant ��3. It
can be seen that the pro®le of the three-wave peak of a
diffracted wave is a single-valued and continuous func-
tion of the triplet phase invariant.

We note that, in the vicinity of the three-wave Lorentz
point, some quantitative disagreement between the
calculated re¯ection coef®cients and those obtained
using the above model exists. This is because the present
model does not take into account the actual energy
transfer from the wave H to the wave K, resulting in a
general decrease in the re¯ection coef®cients in the
vicinity of the Lorentz point. Apparently, instead of
using directly excited two-wave diffraction, a more
fruitful and exact approach to the analysis of phase
sensitivity would be to utilize directly excited three-
wave diffraction with either K or L as a forbidden
re¯ection. Under these circumstances, the directly
excited waves will then be designated as wave I with the
forbidden K diffraction and wave II with the forbidden
L diffraction. The energy out¯ow from the wave H into
the wave K is through the Umweg process for the former
case and the direct excitation for the latter case. This
causes the decrease of the re¯ection coef®cient of the
directly excited wave H near the Lorentz point. The
above features are easily observed from the semi-inte-
gral curves. For example, Fig. 8 shows two three-wave
semi-integral curves, 1 and 2, for the intensity distribu-
tions of waves I and II, respectively. For comparison, a
straight line, 3, calculated for the two-wave diffraction H
is also given. It can be easily seen that, in comparison
with the proposed scheme, the distribution RH��'H�
calculated for ��3 � �=2 (curve 4) is more exactly
associated with the interference attenuation of the
Umweg-excited wave (curve 6) and of one of the waves I
or II. For ��3 � ÿ�=2, the distribution RH��'H� (curve
5) is associated with the interference ampli®cation of
these waves. For a more detailed description of phase

Fig. 7. Semi-integral re¯ection coef®cient RH��'H; ��3�. Fig. 8. Semi-integral curves RH��'H�.

Fig. 6. Semi-integral curves 1±4 for RH��'H� � ÿ�=2; 0;�=2;�,
respectively.
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sensitivity, it is dif®cult to give preference to either of
the waves I or II. Probably, in this case it is necessary to
consider a more complex scheme for the interaction of
the waves involved.

The purpose of making the aforementioned remarks
is to indicate possibilities for further more detailed
studies of the interference of the waves in three-wave
diffraction. We believe, however, that the simple scheme
proposed here accounts rather well for the phase
sensitivity of three-wave diffraction and can be used to
develop an experimental technique for determining the
magnitude of the triplet phase invariant.

4. A technique for direct determination of the triplet
phase invariant

The technique for the determination of a triplet phase
invariant is reduced to the measurement of the three-
wave peak pro®le Iexp��'H� and its comparison with
those Icalc� ��3;�'H� calculated for various phase invari-
ant values. A proper check for the correctness of the
resulting triplet phase invariant could be a minimum
value of the parameter

P� ��3;�'�
� R �Iexp��'H� ÿ Icalc� ��3;�'H ��'��2 d�'H : �31�

The calculations are made by assuming that the struc-
ture factors of the re¯ections �FH, �FK and �FL are known
from the measured two-wave re¯ection intensities.
Evidently, to determine the ��3 value to a high degree of
accuracy, one must take into account the actual spectral
and angular characteristics of the incident X-ray beam.
The above-described approach has been realized by
Kshevetskiy et al. (1987). Certainly, this technique can
be used with high accuracy for `rather perfect' crystals.

For a centrosymmetric structure, the value of the
triplet phase invariant can be determined in a simpler
way. One of the two possible values, ��3 � 0 or �, is
determined from the asymmetry of the three-wave peak,
i.e. from the order of appearance of the local minimum
and maximum (Weckert & HuÈ mmer, 1997; Chang, 1998,
and references therein). Note that the results obtained
here refer to the case in which the increase of an
azimuthal angle corresponds to the exit of a secondary
lattice point K from the Ewald sphere. As follows from
(27)±(29), for a ®xed value of the triplet phase invariant,
the order of appearance of the interference-induced
ampli®cation and attenuation regions for �-polarized
incident radiation is dependent on the position of the K
lattice point with respect to the Ewald sphere, rather
than on the three-wave diffraction geometry, i.e. it is
independent of the diffraction vectors H and K of a
particular con®guration. In particular, when the lattice
point K moves outside the Ewald sphere for � polar-
ization and ��3 � 0, the attenuation region will follow
the ampli®cation region.

For a correct comparison of the measured three-wave
peak pro®le and the calculated pro®les, it is necessary to
establish whether the lattice point K enters or leaves the
Ewald sphere for the selected direction of azimuthal
scanning. On the one hand, the choice of a direction of
azimuthal scanning is rather arbitrary. On the other
hand, it is well known that a multiple-wave diffracto-
gram exhibits two peaks associated with a particular
multiple-wave con®guration which have mutually
inversed pro®le asymmetry. It is useful to view Fig. 9
(see also Chang, 1984) in which the multiple-wave
diffraction geometry in the reciprocal space is illu-
strated. The plane of the ®gure is normal to the
diffraction vector H, i.e. the reciprocal-lattice points 0
and H coincide with each other. The Ewald sphere S in
Fig. 9 is ®xed, while the secondary lattice points Ki

describe circles pi as a result of the crystal rotation about
the diffraction vector H. The circles of intersection of
the Ewald sphere with the planes of circles pi are
designated as si, and the intersections of the circles si and
pi are designated as K

�1�
i and K

�2�
i . The arcs of the circles

pi with the ends K
�1�
i and K

�2�
i , for the lattice point Ki

being inside and outside the Ewald sphere, are desig-
nated as INi and OUTi, respectively. Fig. 9 illustrates two
different cases: the case i � 1, when the length of the arc
IN1 is shorter than that of the arc OUT1, and the
corresponding azimuthal angle '1 <�, and the case
i � 2, when the length of the arc OUT2 is shorter than
that of the arc IN2, and the angle '1 >�. It can be easily
seen that, for the case i � 1, the angle between the
vectors Li and Ki is acute and the condition

Ci � H � Ki ÿ K2
i > 0 �32�

is satis®ed, while, for the case i � 2, this angle is obtuse
and Ci < 0.

It is then possible to determine experimentally the
direction of movement of the lattice point Ki traversing

Fig. 9. Multiple-wave diffraction geometry in reciprocal space.
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the Ewald sphere. For this, we ®rst determine from the
multiple-wave diffractogram the two angular positions,
K
�1�
i and K

�2�
i , of the peaks associated with the three-

wave con®guration under consideration. If a section of
the diffractogram located between these peaks corre-
sponds to the azimuthal angle 'i <� and the condition
Ci > 0 is satis®ed, this section is in the INi region;
otherwise, when Ci < 0, it is in the OUTi region. The
direction of further movement of the lattice point Ki

with respect to the Ewald sphere for each of the peaks
under consideration can be determined from the
diffractogram without dif®culty.

5. Polarization and phase sensitivity

We now analyse the polarization factors given in (19a)±
(19d) for the Umweg-excited wave. This will enable us to
reveal the phase sensitivity of three-wave diffraction for
different incident-wave polarizations.

As was noted in x3.3, for � polarization, ��
3 � 0. For �

polarization, ��
3 can assume values 0 or � (mod 2�),

depending on whether the p�um��� and P�H have the same
signs. It follows from (29) that, for � and � polarizations,
the angular distributions of �� and �� qualitatively
coincide with each other for ��

3 � 0 and differ by � for
��

3 � �. Within the model under consideration, this
means that, for the two polarizations in the former case,
the regions of ampli®cation and attenuation appear in
the same order, while, in the latter case, these regions
appear in the reverse order (Juretschke, 1986; Weckert
& HuÈ mmer, 1997; Chang, 1998, and references therein).
This observation is supported by the numerical calcu-
lations. In particular, Fig. 10 gives the calculated pro®les
of semi-integral curves for the three-wave con®guration
Ge(000, 331, �311) and Cu K�1 radiation, where ��

3 � �.
The peak pro®les calculated for the two polarizations
have mutually inversed asymmetry (curve 3 compared

with curve 1 for ��3 � 0 and curve 4 compared with
curve 2 for ��3 � �).

Using expression (19b), we have identi®ed the regions
of the Ewald sphere for which ��

3 � 0 and ��
3 � �.

Fig. 11 shows the projection of these regions onto the
primary two-wave diffraction plane. The regions corre-
sponding to ��

3 � � are shaded. The boundaries of
these regions are the branches of the hyperbola with the
asymptotes coincident with the lines of the vectors s0

and sH. As can be seen, the area of the shaded regions is
smaller than that of the non-shaded regions. It is then
concluded that the mutually inversed asymmetry of
peak pro®les for the two polarizations is encountered
less often than the identical asymmetry. As the diffrac-
tion angle of the primary re¯ection approaches �=4, the
area of the shaded regions increases to up to half of the
Ewald sphere.

The conditions of mutually inversed asymmetry of
peak pro®les for the two polarizations proposed in the
present paper based on the signs of the polarization
factors of the directly excited and the Umweg-excited
waves are the same as the conditions proposed by
Juretschke (1986), derived from the two-wave approxi-
mation. Weckert & HuÈ mmer (1997) also indicated the
above conditions, which are necessary but not suf-
®cient for the appearance of this inversed asym-
metry. In particular, for the three-wave con®guration

Fig. 10. Three-wave diffraction (000, 331, �311). Semi-integral curves
RH��'H�: 1 ( ��3 � 0), 2 ( ��3 � �) for �-polarized incident radiation,
and 3 ( ��3 � 0), 4 ( ��3 � �) for �-polarized incident radiation.
Values are given in units of RH��'H� for the two-wave case for
�-polarized incident radiation.

Fig. 11. Projection of the Ewald sphere onto the primary two-wave
diffraction plane. �H <�=4 for (a) and �H >�=4 for (b).
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Ge(000, 311, �24�2) and Cu K�1 radiation, the mutually
inversed asymmetry of peak pro®les for the two polari-
zations does not occur in reality. This is in agreement
with our conditions as well as the conditions of
Juretschke (1986) and with the dynamical calculations.
However, because of the conditions indicated by
Weckert & HuÈ mmer (1997), the occurrence of the
mentioned change of asymmetry is possible. Besides,
our conditions depend on the wave vectors involved
and the polarization vectors of the incident and the
primary re¯ected waves. That is, the conditions are
independent of the polarization unit vectors rK and pK

of the secondary re¯ection K, and thus are independent
of the choice of these vectors. In contrast, the conditions
given by Weckert & HuÈ mmer (1997) are dependent on
this choice. From this point of view, their conditions are
not convenient for practical use.

It seems that � polarization should be used in the
determination of the value of the triplet phase invariant,
in view of the fact that, for � polarization, an additional
feature is observed. However, when determining the
value of the triplet phase invariant, other facts must be
considered. From (19a) and (19b), when the wavevector
of a secondary wave and the vector r are collinear,
p�um���, p�um��� � 0, whereas p�um���, p�um��� 6� 0. Thus,
the Umweg-excited wave amplitude is zero only for the
� polarization and thus the primary wave is insensitive
to the change of the value of the triplet phase invariant.
Numerical calculations support this observation. For a
Ge crystal and Cu K�1 radiation, there exist several
con®gurations for which p�um���, p�um��� � 0; in parti-
cular, this condition is ful®lled with the (000, 220, 115)
con®guration. It should be noted that in this case the
wave vector of the secondary wave is parallel to the
crystal surface; therefore, the conventional solution of
the fundamental equations of the dynamical theory
of X-ray diffraction is inapplicable. To calculate the
re¯ection coef®cients of a diffracted wave, a generalized
approach proposed by Stetsko & Chang (1997) should
apply. Fig. 12 shows the semi-integral curves for the two
polarizations and the triplet phase invariant values
��3 � 0 and �. Indeed, only the peak pro®les for the �

polarization are sensitive to the change of the value of
the triplet phase invariant. For the diffraction geometry
in question, the three-wave peak pro®le (line 1) for the
� polarization coincides with the two-wave pro®le
irrespective of the value of ��3.

Therefore, the key factors in determining the value of
the triplet phase invariant are the phase sensitivity of the
peak pro®les and the peak contrast against the back-
ground of the two-wave intensity. High phase sensitivity
can be achieved when the absolute value of at least one
of the polarization factors, p�um��� or p�um���, is signi®-
cantly larger than zero. For a selected primary re¯ection,
the change of the polarization factor is only possible by
changing the incident wavelength. Therefore, to obtain
high phase sensitivity, it is necessary to select the

wavelengths for which the polarization factors can reach
large values. However, unfavourable situations could
possibly occur when the absolute values of the structure
factors of the secondary and the coupling re¯ections
turn out to be signi®cantly smaller than that of the
primary re¯ection even though the aforementioned
conditions have been met. Thereby, the intensity of the
Umweg-excited wave is signi®cantly lower than that of
the directly excited wave, irrespective of the value of
the polarization factor. Under this circumstance, it is
necessary to use �-polarized radiation and to select a
wavelength so that the diffraction angle of the primary
re¯ection is close to �=4. Then a good contrast of the
three-wave peak can be achieved against the two-wave
intensity background.

In conclusion, we have proposed a model for
analysing the phase sensitivity of the re¯ection coef®-
cients of diffracted waves in the case of three-wave
X-ray diffraction which is based on the interference of
the directly excited and Umweg-excited diffracted
waves. The present model properly accounts for the
phase sensitivity of this type of diffraction, as well as the
behaviour of a diffracted wave as a function of the
triplet phase invariant, the polarization state of the
incident wave and the diffraction geometry. This model
provides the diffraction conditions for achieving high
phase sensitivity that are necessary for determining the
values of triplet phase invariants to a high degree of
accuracy. Good agreement between the results obtained
by this model and the numerical calculations carried out
within the framework of the dynamical theory is shown.
A method of determining the value of the triplet phase
invariant has been developed, based on the comparison
of the experimentally measured three-wave peak
pro®les with the pro®les calculated for different values
of the triplet phase invariant.

Fig. 12. Three-wave diffraction (000, 220, 115). Semi-integral curves
RH��'H�: 1 (for any values of ��3) for �-polarized incident
radiation, and 2 ( ��3 � 0), 3 ( ��3 � �) for �-polarized incident
radiation. Curves are normalized to a corresponding value for two-
wave diffraction for �-polarized incident radiation.
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